第135章 这还要证明?这还能证明?
了三角形的面积公式,那么接下来就可以很轻松的计算出任意多边形的面积了。
甚至据此,也可以推导出圆的面积公式。
“这运用的是割圆术?”
看到书上运用圆的内接正多边形的方式来无限逼近圆的面积,姜子淳一下子就看出了对方所用的方法。
毕竟刘徽先生的“割圆术”可是和出名的。书院的算术课上自然也会教这些。
当然,每年也有很多学生都会挂在这上面。
此处证明的时候,用的是内接正多边形和外接正多边形来从两个方面逼近,最后算出当边无穷大的时候,两个的极限值相等,而这也就是圆的面积。
毕竟可以很轻松的看出,圆的面积是一定大于内接正多边形而小于外接正多边形的。
此时两者的值唯一了,那自然就是圆的面积了。
“原来是这样啊!我懂了!”
姜子淳点了点头。
“诶,等等,佚名大师这里好像也用了无穷大,那这么说,我的那个想法确实可以喽!”
看到此处,姜子淳想起了刚才他们小组还在讨论的(1/2)^n问题。
她顿时感觉自己和大师有了一种灵魂上的想
<本章未完请点击"下一页"继续观看!>