第一百四十九章:现场证明
攻克的堡垒。
然而,眼前这位老教授却是将目光盯向了它。
这一刻,所有人都是来了精神,一个个目光如炬的看向报告台上的白板。
在众人的目光注视下,老教授神色淡定的拿起黑色记号笔,一边在白板上开始书写,一边缓缓开口说道:“x是一个拓扑空间,a(x)表示它的开集格,拓扑空间x是核紧的,当且仅当Ω(x)是连续格,通常我们认为一个拓扑是紧的是说它是lawso紧的……”
“所以,对于连续depol,我们有一些基本性质。
1.插入性质,xy∈l,x<y,则存在z∈l,使得x<z<y
2{x∈l}是α(l)的基。
3.α(l)是连续格。
……
似乎是为了让人听的更清楚,所以老教授的语速并不快。
但是落在每个人的耳中,却犹如惊雷一般。
因为对于老教授的报告,他们找不出丝毫的漏洞。
大概过了一个多小时之后,当时针指向十点半左右的时候,老教授放下了手中的黑色记号笔,面带微笑的转过身,望着众人。
“我们由此得出结论,当l是带有性质m的具有最小元的连续domain,则函数空间(x-→l
<本章未完请点击"下一页"继续观看!>