第七百一十四章 拓扑
用热咖啡尝试本实验。)
方法:伸出手向前反手握住咖啡杯,然后逐渐向胸前旋转,从腋下穿过,这是第一圈。此时咖啡杯转完了一圈,但胳膊已经扭曲成了奇怪的形状。这时将胳膊抬高,从头顶再转过第二圈,才能让一切复原。
手残党瞩目:你们用空杯子就好,以免灌自己一脖子水。
实际上你的手和咖啡杯的旋转在拓扑学中称为旋转群so(3);完全回到原状就等于在so(3)里画出了一个环。拓扑学中,so(3)的基本群是“z/2”――这意味着,你要让咖啡杯复原两次,才能让你的整个胳膊复原一次。
也就是说,如果在商场的地板上画了一张整个商场的地图,那么你总能在地图上精确地作一个“你在这里”的标记。
1912年,荷兰数学家布劳威尔证明了这么一个定理:假设d是某个圆盘中的点集,
f是一个从d到它自身的连续函数,则一定有一个点x,使得f(x)=x。换句话说,让一个圆盘里的所有点做连续的运动,则总有一个点可以正好回到运动之前的位置。这个定理叫做布劳威尔不动点定理(brouerfixedpointtheorem)。
除了上面的“地图定理”,布劳威
<本章未完请点击"下一页"继续观看!>